Titolo:  Deepsquatting: Learning-based typosquatting detection at deeper domain levels
Autori: 
Data di pubblicazione:  2017
Autori:  Piredda, Paolo; Ariu, Davide; Biggio, Battista; Corona, Igino; Piras, Luca; Giacinto, Giorgio; Roli, Fabio
Presenza coautori internazionali:  no
Lingua:  Inglese
Titolo del libro:  AI*IA 2017 Advances in Artificial Intelligence
ISBN:  9783319701684
Editore:  Springer
Serie:  LECTURE NOTES IN COMPUTER SCIENCE
Sezione:  Contributo
Volume:  10640
Pagina iniziale:  347
Pagina finale:  358
Numero di pagine:  12
Digital Object Identifier (DOI):  http://dx.doi.org/10.1007/978-3-319-70169-1_26
Codice identificativo Scopus:  2-s2.0-85033731725
Codice identificativo ISI:  WOS:000451442200026
Revisione (peer review):  Esperti anonimi
Nome del convegno:  16th International Conference on Italian Association for Artificial Intelligence, AI*IA 2017
Periodo del convegno:  14-17 November 2017
Luogo del convegno:  Bari, Italy
Abstract:  Typosquatting consists of registering Internet domain names that closely resemble legitimate, reputable, and well-known ones (e.g., Farebook instead of Facebook). This cyber-attack aims to distribute malware or to phish the victims users (i.e., stealing their credentials) by mimicking the aspect of the legitimate webpage of the targeted organisation. The majority of the detection approaches proposed so far generate possible typo-variants of a legitimate domain, creating thus blacklists which can be used to prevent users from accessing typo-squatted domains. Only few studies have addressed the problem of Typosquatting detection by leveraging a passive Domain Name System (DNS) traffic analysis. In this work, we follow this approach, and additionally exploit machine learning to learn a similarity measure between domain names capable of detecting typo-squatted ones from the analyzed DNS traffic. We validate our approach on a large-scale dataset consisting of 4 months of traffic collected from a major Italian Internet Service Provider.
Tipologia: 4.1 Contributo in Atti di convegno

File in questo prodotto:
File Descrizione Tipologia Licenza  
piredda17-AIIA.pdf  versione pre-print Administrator   Richiedi una copia

Questionario e social

Condividi su: