Titolo:  Infinity-norm support vector machines against adversarial label contamination
Autori: 
Data di pubblicazione:  2017
Autori:  Demontis, Ambra; Biggio, Battista; Fumera, Giorgio; Giacinto, Giorgio; Roli, Fabio
Presenza coautori internazionali:  no
Lingua:  Inglese
Titolo del libro:  Italian Conference on Cybersecurity. Proceedings of the First Italian Conference on Cybersecurity (ITASEC17)
Editore:  CEUR-WS
Serie:  CEUR WORKSHOP PROCEEDINGS
Volume:  1816
Pagina iniziale:  106
Pagina finale:  115
Numero di pagine:  10
Codice identificativo Scopus:  2-s2.0-85017359479
URL:  http://ceur-ws.org/Vol-1816/
Revisione (peer review):  Esperti anonimi
Nome del convegno:  1st Italian Conference on Cybersecurity, ITASEC 2017
Periodo del convegno:  17-20 January 2017
Luogo del convegno:  Venezia, Italia
Abstract:  Nowadays machine-learning algorithms are increasingly being applied in security-related applications like spam and malware detection, aiming to detect never-before-seen attacks and novel threats. However, such techniques may expose specific vulnerabilities that may be exploited by carefully-crafted attacks. Support Vector Machines (SVMs) are a well-known and widely-used learning algorithm. They make their decisions based on a subset of the training samples, known as support vectors. We first show that this behaviour poses risks to system security, if the labels of a subset of the training samples can be manipulated by an intelligent and adaptive attacker. We then propose a countermeasure that can be applied to mitigate this issue, based on infinity-norm regularization. The underlying rationale is to increase the number of support vectors and balance more equally their contribution to the decision function, to decrease the impact of the contaminating samples during training. Finally, we empirically show that the proposed defence strategy, referred to as Infinity-norm SVM, can significantly improve classifier security under malicious label contamination in a real-world classification task involving malware detection.
Tipologia: 4.1 Contributo in Atti di convegno

File in questo prodotto:
File Descrizione Tipologia Licenza  
ITASEC17_Demontis_printed.pdf  versione editoriale Open Access Visualizza/Apri

Questionario e social

Condividi su: