DEICTIC: a compositional and declarative gesture description based on hidden markov models

Carcangiu, Alessandro;Spano, Lucio Davide;Fumera, Giorgio;Roli, Fabio


The consumer-level devices that track the user's gestures eased the design and the implementation of interactive applications relying on body movements as input. Gesture recognition based on computer vision and machine-learning focus mainly on accuracy and robustness. The resulting classifiers label precisely gestures after their performance, but they do not provide intermediate information during the execution. Human-Computer Interaction research focused instead on providing an easy and effective guidance for performing and discovering interactive gestures. The compositional approaches developed for solving such problem provide information on both the whole gesture and on its sub-parts, but they exploit heuristic techniques that have a low recognition accuracy. In this paper, we introduce DEICTIC, a compositional and declarative description for stroke gestures, which uses basic Hidden Markov Models (HMMs) to recognise meaningful predefined primitives (gesture sub-parts) and it composes them to recognise complex gestures. It provides information for supporting gesture guidance and it reaches an accuracy comparable with state-of-the-art approaches, evaluated on two datasets from the literature. Through a developer evaluation, we show that the implementation of a guidance system with DEICTIC requires an effort comparable to compositional approaches, while the definition procedure and the perceived recognition accuracy is comparable to machine learning.
Esperti anonimi
Classification; Compositional gesture modelling; Declarative gesture modelling; Gestures; Hidden markov models; Software; Human Factors and Ergonomics; 3304; Engineering (all); Human-Computer Interaction; Hardware and Architecture
Carcangiu, Alessandro; Spano, Lucio Davide; Fumera, Giorgio; Roli, Fabio
1.1 Articolo in rivista
1 Contributo su Rivista::1.1 Articolo in rivista
Files in This Item:
File Size Format  
Cargangiu et al._International Journal of Human Computer Studies_2019.pdf

Solo gestori archivio

Description: articolo
Type: versione editoriale
Size 4.62 MB
Format Adobe PDF
4.62 MB Adobe PDF & nbsp; View / Open   Request a copy

open access

Description: Articolo principale
Type: versione post-print
Size 2.66 MB
Format Adobe PDF
2.66 MB Adobe PDF View/Open

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Questionnaire and social

Share on:
Impostazioni cookie