A discontinuous algorithm for distributed convex optimization



In this paper we present a novel discontinuous algorithm which cooperatively solves a distributed convex multi-agent optimization problem under a consensus constraint. The team performance function is the sum of local quadratic objective functions which are known to the local agent only. The proposed local interaction rule between the agents employs the subgradient of the local objective function along with a PI-like discontinuous component enforcing consensus between the agents' states in finite-time. Under mild assumptions on the local cost, a formal Lyapunov analysis confirms the convergence properties of the algorithm towards the optimal solution of the considered problem. To corroborate the theoretical results simulative analysis are presented.
Control and Systems Engineering; Electrical and Electronic Engineering
Files in This Item:
File Size Format  

Solo gestori archivio

Description: Articolo principale
Type: versione editoriale
Size 1.02 MB
Format Adobe PDF
1.02 MB Adobe PDF & nbsp; View / Open   Request a copy

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Questionnaire and social

Share on:
Impostazioni cookie